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But…why??
A look at common patterns found on the web, 
how they are harmful for accessibility, and what to do instead.
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Open source projects
Everyone is welcome to participate!
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Other a11y talks

melsumner
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So, why this talk?
Because…reasons.

●Well-defined process

●Semantic markup

●Beautiful design

●Accessibility non-negotiable

●Tests

●Thorough documentation
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accessible design system
!=

accessible application



Agenda
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1. First, we’ll talk through some UI examples.

2. Then, we’ll talk about where they fail accessibility.

3. Then I will show you what to do instead.

4. P.S. We may have some detours

5. P.P.S. I will try very hard to fit this into the time limit
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Some Disclaimers
Progress, not perfection. And other things.

The code you are about to see may be real. Or made up. Or some combination thereof.

Any resemblance to code living or dead is purely coincidental…or not. It’s not to shame anyone, 
but rather show real examples of UI and the real ways it fails accessibility. Because once we 
know, we can fix it. We can do better next time. 

I’ve said it before and I’ll say it again: accessibility is about progress, not perfection.

Finally, all views expressed are my own and may not reflect the views of my employers, the web at large, or even other people who also 
work in the field of digital accessibility.
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01

Accessible Names
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Example UI: Add integrations
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Where this breaks for accessibility
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Each link needs a unique accessible name
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What might this code look like?
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Equally viable options to consider

The aria-label attribute

● Takes a string value
● Good option for when there is no 

existing element to reference
● Sometimes a bit quicker to implement
● Not additive; will replace content with 

its value.

The aria-labelledby attribute

● Takes an element’s id as its value
● Can have multiple values (space 

separated)
● Will ignore repeated values
● Can reference…itself.
● Will replace text content with its 

calculated total value
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What to do instead: the aria-label option



©2024 HASHICORP16

What to do instead: the aria-labelledby option
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Users can navigate by element groups
Which one would you prefer?
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Bonus Example: Accordion using aria-labelledby
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DETOUR
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The Accessible Name and 
Description Computation 

20
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Detour
Agenda

Context

AccName: Browser Instructions

Browser Exceptions

AccName: Dev Guidance

AccDesc: Browser Instructions

AccDesc: Dev Guidance
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3 things to know about this spec

1. The Accessible Name and Description Computation is a specification that tells 
browsers how to calculate the accessible name and the accessible description.

2. The goal of the browser is to expose some accessible name (AccName), and in 
some cases, an accessible description (AccDesc) to the accessibility object. 

3. They will follow specification as much as they can but they will also do weird 
stuff non-spec things if they are convinced they need to do to that.
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AccName: Browser Instructions
How the browser should find an accessible name

Browsers are supposed to return the first thing they find, looking in this order:

1. Look for an aria-labelledby attribute

2. Then look for an aria-label attribute with a non-empty value

3. Then look for an aria-describedby attribute

4. Look for semantic content (text of a button element. Label. Legend.)

5. Finally, if there’s nothing else, look for title or placeholder.
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AccName: Browser Exceptions
Some gotchas to be aware of so you don’t accidentally get things wrong

1. They must return the first thing they find….even if that thing has an “empty” 
string.

2. They may choose to expose text even if you’ve used the aria-hidden attribute.

3. There is no spec for how browsers should implement exceptions. This means 
they are not likely to be implemented consistently.
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AccName: Developer Guidance
How you, an informed developer, prioritizes

1. Semantic content

2. If a suitable label otherwise already exists, or you know there will be multiple 
values: use the aria-labelledby

3. If no suitable label exists: use the aria-label attribute

4. Don’t use the placeholder or title attributes for an accessible name

5. For JS devs specifically: i18n correctly, okay?
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AccDesc: Browser Instructions
How the browser should find an accessible description

● Look for an aria-describedby attribute (if not used for AccName)

● Then look for an aria-description attribute 

● Then look for elements that are eligible for the description calculation, and not 
already used for the accessible name computation: 

○ table caption text content

○ summary element, text equivalent computation of subtree

● The title attribute value (again, if not already used)
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AccDesc: Developer Guidance
How you, an informed developer, prioritizes

1. Semantic content (i.e., Table caption element content)

2. Use the aria-describedby attribute for help and error text

○ Takes an id as the value

○ It can have multiple values (space separated id attributes)

3. The aria-description attribute is also a possibility

○ It should have a string value

○ It is preferred to put the descriptive text in the DOM
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END
DETOUR
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02

Headings, Labels, 
and Instructions

29



©2024 HASHICORP

02.1

Headings, Labels, 
and Instructions

30
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Headings TL;DR

1. HTML heading elements for semantic meaning, CSS for styling

2. Every section should have a heading

3. Headings need to be in order
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If it looks like a heading, and acts like a heading…
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…but doesn’t sound like a heading…
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…then it’s not a heading, it’s an #a11yFail.

https://www.w3.org/WAI/WCAG22/Techniques/failures/F2

https://www.w3.org/WAI/WCAG22/Techniques/failures/F2
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Why headings matter

●The heading tells the user what that 
section of the page is about

●Users with screen readers can navigate 
to the next heading with a keypress

●Users with screen readers can also 
navigate through a list of all headings

●This allows users to quickly choose what 
part of the page they want
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Headings: What to do instead
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02.2

Headings, Labels, 
and Instructions
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Label requirements
Make sure you don’t miss anything!

Exist
An input label must 
exist.

WCAG Success Criteria:

3.3.2 Labels or 
instructions

Correct
The markup for the 
label is valid.

WCAG Success Criteria:

1.3.1 Info & Relationships

4.1.2 Name, Role, Value

Clear
The label is 
informative.

WCAG Success Criteria:

2.4.6 Headings and 
Labels

Visible
The visible label is in 
the accName.

WCAG Success Criteria: 

2.5.3 Label in name
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Label example #1

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name
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Label example #2

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name
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Labels: what to do instead

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name
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Bonus: label example

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name
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Bonus: let’s fix it

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name
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02.3

Headings, Labels, 
and Instructions
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Instructions example: delete confirmation modal
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What’s wrong with this picture?



©2024 HASHICORP47

A note about uppercase
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What to do instead: improved instructions
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03

Reflow, Resize, Space

49
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ph&fax 
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What we’re trying to do
What are our desired outcomes for the user?

● Support browser zoom up to 400%

● Support user actions to double the text size

● Support increased space for all text
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Incorrect Reflow example (before zoom)
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Incorrect Reflow example (after zoom)
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Correct Reflow example (before zoom)
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Correct Reflow example (after zoom)
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Text Spacing example (before)
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Text Spacing example (after)
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Spacing text
Hint: bookmarklets help here!!

1. Line height (line spacing) to at least 1.5 times the font size;

2. Spacing following paragraphs to at least 2 times the font size;

3. Letter spacing (tracking) to at least 0.12 times the font size;

4. Word spacing to at least 0.16 times the font size.
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What to do instead
Reflow, resizing, and spacing

● Use relational units (rem, em, vw, etc.)

● Use unitless line heights

● Use grid and flexbox CSS

● Test, test, test!
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Takeaway
Reflow, text resize, text spacing

If you meet these accessibility criteria, 
you sorta get some responsive design for free.*

*@beep: “Honestly this is how I’d frame it, so I vote hell yeah.”
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04

Putting it all together

61
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ph&fax 
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What are we really trying to do here?
Think beyond WCAG

● Think about user outcomes

● Think about going beyond the requirements

● Consider the next level: internal requirements
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Internal Requirements
Document the places where your apps can level up

● Outline WCAG (and give links)

● Explain how your products commit to doing more

○ Design

○ Code

○ Testing

○ Release Process
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ph&fax 



©2024 HASHICORP66

As front-end developers…

Try it with your 
keyboard

We are more likely to 
experience RSI or other 
movement limiting injuries. 
Make sure we’re taking 
care of our future selves 
by ensuring keyboard 
navigation is supported.

Check the color-
contrast

Staring at a screen all day 
will eventually hurt your 
eyes. As we age, we will 
be less able to see color 
contrast. Help your future 
self out by checking color 
contrast for all users.

Use browser zoom and 
see what happens

Again with our eyes, I 
know! But it happens. 
Check out your UIs using 
browser zoom…up to 
400% and make sure none 
of the content is clipped.
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You do not require permission 
to create accessible code.
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