
1

But…why??
A look at common patterns found on the web, 
how they are harmful for accessibility, and what to do instead.

Melanie Sumner
Product Accessibility Lead, Design Systems
HashiCorp

©2024 HASHICORP



©2024 HASHICORP

Melanie
Sumner
➔Product Accessibility Lead, HashiCorp
➔Invited Expert, WAI-ARIA & AccName, W3C
➔Core Team, Ember.js

a11ymel



©2024 HASHICORP

Open source projects
Everyone is welcome to participate!

3



©2024 HASHICORP4

Other a11y talks

melsumner



©2024 HASHICORP5

So, why this talk?
Because…reasons.

●Well-defined process

●Semantic markup

●Beautiful design

●Accessibility non-negotiable

●Tests

●Thorough documentation



©2024 HASHICORP

accessible design system
!=

accessible application



Agenda

©2024 HASHICORP7

1. First, we’ll talk through some UI examples.

2. Then, we’ll talk about where they fail accessibility.

3. Then I will show you what to do instead.

4. P.S. We may have some detours

5. P.P.S. I will try very hard to fit this into the time limit



©2024 HASHICORP

Some Disclaimers
Progress, not perfection. And other things.

The code you are about to see may be real. Or made up. Or some combination thereof.

Any resemblance to code living or dead is purely coincidental…or not. It’s not to shame anyone, 
but rather show real examples of UI and the real ways it fails accessibility. Because once we 
know, we can fix it. We can do better next time. 

I’ve said it before and I’ll say it again: accessibility is about progress, not perfection.

Finally, all views expressed are my own and may not reflect the views of my employers, the web at large, or even other people who also 
work in the field of digital accessibility.



©2024 HASHICORP

01

Accessible Names

9



©2024 HASHICORP10

Example UI: Add integrations



©2024 HASHICORP11

Where this breaks for accessibility



©2024 HASHICORP12

Each link needs a unique accessible name



©2024 HASHICORP13

What might this code look like?



©2024 HASHICORP14

Equally viable options to consider

The aria-label attribute

● Takes a string value
● Good option for when there is no 

existing element to reference
● Sometimes a bit quicker to implement
● Not additive; will replace content with 

its value.

The aria-labelledby attribute

● Takes an element’s id as its value
● Can have multiple values (space 

separated)
● Will ignore repeated values
● Can reference…itself.
● Will replace text content with its 

calculated total value



©2024 HASHICORP15

What to do instead: the aria-label option



©2024 HASHICORP16

What to do instead: the aria-labelledby option



©2024 HASHICORP17

Users can navigate by element groups
Which one would you prefer?



©2024 HASHICORP18

Bonus Example: Accordion using aria-labelledby



©2024 HASHICORP19

DETOUR



©2024 HASHICORP

The Accessible Name and 
Description Computation 

20



©2024 HASHICORP21

Detour
Agenda

Context

AccName: Browser Instructions

Browser Exceptions

AccName: Dev Guidance

AccDesc: Browser Instructions

AccDesc: Dev Guidance



©2024 HASHICORP

3 things to know about this spec

1. The Accessible Name and Description Computation is a specification that tells 
browsers how to calculate the accessible name and the accessible description.

2. The goal of the browser is to expose some accessible name (AccName), and in 
some cases, an accessible description (AccDesc) to the accessibility object. 

3. They will follow specification as much as they can but they will also do weird 
stuff non-spec things if they are convinced they need to do to that.



©2024 HASHICORP

AccName: Browser Instructions
How the browser should find an accessible name

Browsers are supposed to return the first thing they find, looking in this order:

1. Look for an aria-labelledby attribute

2. Then look for an aria-label attribute with a non-empty value

3. Then look for an aria-describedby attribute

4. Look for semantic content (text of a button element. Label. Legend.)

5. Finally, if there’s nothing else, look for title or placeholder.



©2024 HASHICORP

AccName: Browser Exceptions
Some gotchas to be aware of so you don’t accidentally get things wrong

1. They must return the first thing they find….even if that thing has an “empty” 
string.

2. They may choose to expose text even if you’ve used the aria-hidden attribute.

3. There is no spec for how browsers should implement exceptions. This means 
they are not likely to be implemented consistently.



©2024 HASHICORP

AccName: Developer Guidance
How you, an informed developer, prioritizes

1. Semantic content

2. If a suitable label otherwise already exists, or you know there will be multiple 
values: use the aria-labelledby

3. If no suitable label exists: use the aria-label attribute

4. Don’t use the placeholder or title attributes for an accessible name

5. For JS devs specifically: i18n correctly, okay?



©2024 HASHICORP

AccDesc: Browser Instructions
How the browser should find an accessible description

● Look for an aria-describedby attribute (if not used for AccName)

● Then look for an aria-description attribute 

● Then look for elements that are eligible for the description calculation, and not 
already used for the accessible name computation: 

○ table caption text content

○ summary element, text equivalent computation of subtree

● The title attribute value (again, if not already used)



©2024 HASHICORP

AccDesc: Developer Guidance
How you, an informed developer, prioritizes

1. Semantic content (i.e., Table caption element content)

2. Use the aria-describedby attribute for help and error text

○ Takes an id as the value

○ It can have multiple values (space separated id attributes)

3. The aria-description attribute is also a possibility

○ It should have a string value

○ It is preferred to put the descriptive text in the DOM



©2024 HASHICORP28

END
DETOUR



©2024 HASHICORP

02

Headings, Labels, 
and Instructions

29



©2024 HASHICORP

02.1

Headings, Labels, 
and Instructions

30



©2024 HASHICORP

Headings TL;DR

1. HTML heading elements for semantic meaning, CSS for styling

2. Every section should have a heading

3. Headings need to be in order



©2024 HASHICORP32

If it looks like a heading, and acts like a heading…



©2024 HASHICORP33

…but doesn’t sound like a heading…



©2024 HASHICORP34

…then it’s not a heading, it’s an #a11yFail.

https://www.w3.org/WAI/WCAG22/Techniques/failures/F2

https://www.w3.org/WAI/WCAG22/Techniques/failures/F2


©2024 HASHICORP35

Why headings matter

●The heading tells the user what that 
section of the page is about

●Users with screen readers can navigate 
to the next heading with a keypress

●Users with screen readers can also 
navigate through a list of all headings

●This allows users to quickly choose what 
part of the page they want



©2024 HASHICORP36

Headings: What to do instead



©2024 HASHICORP

02.2

Headings, Labels, 
and Instructions

37



©2024 HASHICORP38

Label requirements
Make sure you don’t miss anything!

Exist
An input label must 
exist.

WCAG Success Criteria:

3.3.2 Labels or 
instructions

Correct
The markup for the 
label is valid.

WCAG Success Criteria:

1.3.1 Info & Relationships

4.1.2 Name, Role, Value

Clear
The label is 
informative.

WCAG Success Criteria:

2.4.6 Headings and 
Labels

Visible
The visible label is in 
the accName.

WCAG Success Criteria: 

2.5.3 Label in name



©2024 HASHICORP39

Label example #1

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name



©2024 HASHICORP40

Label example #2

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name



©2024 HASHICORP41

Labels: what to do instead

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name



©2024 HASHICORP42

Bonus: label example

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name



©2024 HASHICORP43

Bonus: let’s fix it

WCAG 3.3.2 Labels or Instructions

WCAG 1.3.1 Info and Relationships

WCAG 4.1.2 Name, Role, Value

WCAG 2.4.6 Headings and Labels

WCAG 2.5.3 Label in Name



©2024 HASHICORP

02.3

Headings, Labels, 
and Instructions

44



©2024 HASHICORP45

Instructions example: delete confirmation modal



©2024 HASHICORP46

What’s wrong with this picture?



©2024 HASHICORP47

A note about uppercase



©2024 HASHICORP48

What to do instead: improved instructions



©2024 HASHICORP

03

Reflow, Resize, Space

49



©2024 HASHICORP50

ph&fax 



©2024 HASHICORP

What we’re trying to do
What are our desired outcomes for the user?

● Support browser zoom up to 400%

● Support user actions to double the text size

● Support increased space for all text



©2024 HASHICORP52

Incorrect Reflow example (before zoom)



©2024 HASHICORP53

Incorrect Reflow example (after zoom)



©2024 HASHICORP54

Correct Reflow example (before zoom)



©2024 HASHICORP55

Correct Reflow example (after zoom)



©2024 HASHICORP56

Text Spacing example (before)



©2024 HASHICORP57

Text Spacing example (after)



©2024 HASHICORP

Spacing text
Hint: bookmarklets help here!!

1. Line height (line spacing) to at least 1.5 times the font size;

2. Spacing following paragraphs to at least 2 times the font size;

3. Letter spacing (tracking) to at least 0.12 times the font size;

4. Word spacing to at least 0.16 times the font size.



©2024 HASHICORP

What to do instead
Reflow, resizing, and spacing

● Use relational units (rem, em, vw, etc.)

● Use unitless line heights

● Use grid and flexbox CSS

● Test, test, test!



©2024 HASHICORP

Takeaway
Reflow, text resize, text spacing

If you meet these accessibility criteria, 
you sorta get some responsive design for free.*

*@beep: “Honestly this is how I’d frame it, so I vote hell yeah.”



©2024 HASHICORP

04

Putting it all together

61



©2024 HASHICORP62

ph&fax 



©2024 HASHICORP

What are we really trying to do here?
Think beyond WCAG

● Think about user outcomes

● Think about going beyond the requirements

● Consider the next level: internal requirements



©2024 HASHICORP

Internal Requirements
Document the places where your apps can level up

● Outline WCAG (and give links)

● Explain how your products commit to doing more

○ Design

○ Code

○ Testing

○ Release Process



©2024 HASHICORP65

ph&fax 



©2024 HASHICORP66

As front-end developers…

Try it with your 
keyboard

We are more likely to 
experience RSI or other 
movement limiting injuries. 
Make sure we’re taking 
care of our future selves 
by ensuring keyboard 
navigation is supported.

Check the color-
contrast

Staring at a screen all day 
will eventually hurt your 
eyes. As we age, we will 
be less able to see color 
contrast. Help your future 
self out by checking color 
contrast for all users.

Use browser zoom and 
see what happens

Again with our eyes, I 
know! But it happens. 
Check out your UIs using 
browser zoom…up to 
400% and make sure none 
of the content is clipped.



©2024 HASHICORP

You do not require permission 
to create accessible code.


	But…why??
	Melanie Sumner
	Open source projects
	Other a11y talks
	So, why this talk?
	accessible design system != accessible application
	Agenda
	Some Disclaimers

	01 Accessible Names
	Example UI: Add integrations
	Where this breaks for accessibility
	Each link needs a unique accessible name
	What might this code look like?
	Equally viable options to consider
	The aria-label attribute
	The aria-labelledby attribute

	What to do instead: the aria-label option
	What to do instead: the aria-labelledby option
	Users can navigate by element groups
	Bonus Example: Accordion using aria-labelledby

	The Accessible Name and Description Computation 
	Detour Agenda
	3 things to know about this spec
	AccName: Browser Instructions
	AccName: Browser Exceptions
	AccName: Developer Guidance
	AccDesc: Browser Instructions
	AccDesc: Developer Guidance

	02 Headings, Labels, and Instructions
	02.1 Headings, Labels, and Instructions
	Headings TL;DR
	If it looks like a heading, and acts like a heading…
	…but doesn’t sound like a heading…
	…then it’s not a heading, it’s an #a11yFail.
	Why headings matter
	Headings: What to do instead

	02.2 Headings, Labels, and Instructions
	Label requirements
	Exist
	Correct
	Clear
	Visible

	Label example #1
	Label example #2
	Labels: what to do instead
	Bonus: label example
	Bonus: let’s fix it

	02.3 Headings, Labels, and Instructions
	Instructions example: delete confirmation modal
	What’s wrong with this picture?
	A note about uppercase
	What to do instead: improved instructions


	03 Reflow, Resize, Space
	What we’re trying to do
	Incorrect Reflow example (before zoom)
	Incorrect Reflow example (after zoom)
	Correct Reflow example (before zoom)
	Correct Reflow example (after zoom)
	Text Spacing example (before)
	Text Spacing example (after)
	Spacing text
	What to do instead
	Takeaway

	04 Putting it all together
	What are we really trying to do here?
	Internal Requirements
	As front-end developers…
	Try it with your keyboard
	Check the color-contrast
	Use browser zoom and see what happens






