
Modern CSS Upgrades to
Improve Accessibility
Stephanie Eckles (she/her)
@5t3ph • ModernCSS.dev

https://moderncss.dev/

About Me
• ~15 years experience as a

front-end focused developer

• Career journey: marketing,
product, and design systems

• Writer, speaker, instructor,
podcast host, mom, baker

 

Today we’ll be learning…

Modern CSS capabilities
for building accessibly

inclusive layouts

Topics
01 Focus Visibility 01 Focus V

02 Focus vs. Source Order

03 Desktop Zoom and Reflow

04 Respecting User Preferences

isibility

Focus Visibility

2.4.7: Focus Visible
Keyboard operable interfaces must have
visible focus indicators

2.4.11: Focus Appearance (Minimum)
Draft in WCAG 2.2  
Criteria for developing clearly distinguishable
focus indicators

2.4.11: Focus Appearance (Minimum)

Any outline that is at least 2px thick
and contrasts with the non-focused
state would pass this criterion

Default appearance Focused appearance

2.4.11: Focus Appearance (Minimum)

Minimum area

Outline  
the area of a 1 CSS pixel thick
perimeter of the unfocused
component

or Shape  
the area of a 4 CSS pixel thick
line along the shortest side of a
minimum bounding box of the
unfocused component, and no
thinner than 2 CSS pixels

2.4.11: Focus Appearance (Minimum)

TL;DR for minimum area

Authors are encouraged to make the change as
significant as possible, for example, by
designing a thick border around the element

Default appearance Focused appearance

2.4.11: Focus Appearance (Minimum)

Contrasting area
an area of the focus indicator contrasts at least 3:1
between the colors in the focused and unfocused states

Default appearance Passes contrast Fails contrast

2.4.11: Focus Appearance (Minimum)

Adjacent contrast
the contrasting area also has a contrast ratio of least 3:1
against adjacent colors in the focused component, or the
contrasting area has a thickness of at least 2 CSS pixels

Default appearance Passes adjacent contrast Passes adjacent contrast

Ensuring Visible Focus with Modern CSS

Step 1:  
Set outline properties on interactive elements

:is(a, button, input, textarea, summary) {
 --outline-size: max(2px, 0.08em);
 --outline-style: solid;
 --outline-color: currentColor;
}

Ensuring Visible Focus with Modern CSS

Step 2:  
Apply outline properties on :focus

:is(a, button, input, textarea, summary):focus {
 outline:
 var(--outline-size)
 var(--outline-style)
 var(--outline-color);
 outline-offset: var(--outline-offset, var(--outline-size));
}

Ensuring Visible Focus with Modern CSS
Step 3:  
Customize for specific elements/
components as needed

button {
 --outline-offset: -0.15em;
 --outline-style: dashed;
}

A note about :focus-visible
Based on heuristics, browsers by
default may only show focus indicators
for the state of :focus-visible

Meaning — possibly only keyboard
users will see focus upon tabbing
interactive elements if :focus is not
defined

Topics
01 Focus Visibility 01 Focus V

02 Focus vs. Source Order 02 Focus vs. Sour

03 Desktop Zoom and Reflow

04 Respecting User Preferences

isibility

ce Order

Focus vs Source Order

2.4.3: Focus Order

For both visual and non-visual users, the
focus order - which is typically initiated by
keyboard tabbing - should proceed logically.

Usually this means matching source order to
prevent visually jumping around randomly.

Potential focus order breaking scenarios

Altering placement with

• absolute, fixed, or sticky positioning

• grid areas

• the order property for grid and flexbox

• masonry layout

How to fix focus order?

Be mindful of how you
develop your source!

How to fix focus order?

Re-order the source
instead of using CSS

Topics
01 Focus Visibility

02 Focus vs. Source Order 02 Focus vs. Sour

03 Desktop Zoom and Reflow 03 Desktop Zoom and Re

04 Respecting User Preferences

ce Order

flow

Desktop Zoom and Reflow

1.4.10 Reflow

Reflow is the term for supporting desktop
zoom up to 400%, where content should
reflow into a single column, without:

• Loss of content or functionality

• Requiring scrolling in two dimensions

Desktop Zoom and Reflow

1.4.10 Reflow

On a 1280px wide resolution at 400%,
the viewport content is equivalent to
320 CSS pixels wide 320px width

256px height

Desktop at 400% Zoom vs. iPhone SE

320px width
256px height

375px x 667px

Reflow vs. Responsive Design
Reframing expectations

• User is on a desktop, not a mobile device

• Re-arrange, do not remove, content and functionality

• Orientation is closer to landscape than portrait

• Viewport size is not a proxy for device or user capabilities

Media queries and reflow

There is no dedicated “zoom” media query

Media queries that affect viewports less
than 320px will affect reflow

Potential reflow breaking scenarios

• sticky navigation that covers half or more of the viewport

• contained scroll areas become unscrollable/cut-off

• unwanted results when using fluid typography techniques

• overflow or overlap issues that cut-off content

• spacing appearing too large relative to the content size

Reflow and Section Spacing

section + section {
 margin-top: 128px;
}

0% Zoom 400% Zoom

px/rem vs. vh

0% Zoom 200% Zoom 300% Zoom 400% Zoom

px/rem vs. vh

300% Zoom 400% Zoom

Modern CSS Section Spacing

section + section {
 margin-top: 128px;
}

section + section {
 margin-top: min(128px, 15vh);
}

100% Zoom 200% Zoom 300% Zoom 400% Zoom

Modern CSS Element Padding

.card {
 padding: 1.5rem;
}

.card {
 padding: clamp(1rem, 5%, 1.5rem);
} 400% Zoom

Topics
01 Focus Visibility

02 Focus vs. Source Order

03 Desktop Zoom and Reflow 03 Desktop Zoom and Re

04 Respecting User Preferences04 Respecting User Pr

flow

eferences

Respecting User Preferences

1. Motion

2. Color and contrast

Motion Criteria

2.3.1 Three Flashes or Below Threshold

Avoid anything that flashes more than three
times in any one second period

2.3.3 Animation From Interactions

Motion animation triggered by interaction can
be disabled, unless the animation is essential
to the functionality or the information being
conveyed

prefers-reduced-motion
• Detect operating system setting for motion preference

• Attach to feature query via CSS or JavaScript

• Lack of setting does not mean user is ok with motion

Motion reset
• Run all animations once, and complete transitions instantly

• Maintains duration for JavaScript events

@media (prefers-reduced-motion: reduce) {
 *,
 *::before,
 *::after {
 animation-duration: 0.01ms !important;
 animation-iteration-count: 1 !important;

transition-duration: 0.01ms !important;
scroll-behavior: auto !important;

 }
}

Credit: Andy Bell’s Modern CSS Reset

Testing results of prefers-reduced-motion
In Chromium, found under More Tools > Rendering

Color and Contrast Criterion

1.4.3 Contrast Minimum

Provide enough contrast between text and its
background so that it can be read by people
with moderately low vision

No criteria currently indicate a requirement for
“dark mode” or varying contrast modes

To respect dark/light mode
and contrast modes is to
practice inclusive design

Color and Contrast Feature Media Queries

1. prefers-color-scheme

2. prefers-contrast

3. forced-colors

All media queries adapt to
operating system preference

prefers-color-scheme

Explicitly define properties for “light” or “dark” color schemes

No requirement that “dark” is black, and “light” is white

@media (prefers-color-scheme: dark) {
 /* “dark" mode */
}

@media (prefers-color-scheme: light) {
 /* "light" mode */
}

Related property: color-scheme

:root {
 color-scheme: dark light;
}

<meta name="color-scheme"
content="dark light">

• Indicate a page supports light, dark, or both

• If set on :root or via meta tag, Chrome will
auto-apply adjustments using system colors

• Order listed indicates preference

Related property: color-scheme
Alternatively, explicitly set for form
controls only

input, select, textarea {
 color-scheme: light dark;
}

@media (prefers-color-scheme: dark) {
 body {
 background-color: #222;
 color: #fff;
 }
}

prefers-contrast
@media (prefers-contrast: no-preference) {}
@media (prefers-contrast: less) {}
@media (prefers-contrast: more) {}
@media (prefers-contrast: custom) {}

no-preference
Not set in operating system

 custom
User defined contrast preference, implied
if forced-colors query would match

prefers-contrast ! Not official guidance, more data needed

“less”  
Helps users with light sensitivity
(photophobia), reduces
migraine trigger

• Decrease text vs.
background contrast

• Soften color contrast
shifts between large
areas

• Reduce brightness

“more”  
Helps users read text & see
details, distinguish UI, counter low-
vision impairments (ex. Glaucoma)

• Increase text vs.
background contrast

• Increase use/width of
borders

• Remove box-shadows and
other soft details

forced-colors
Increases text legibility through color contrast via
built-in or user-defined color palettes

“active” means the user’s selected theme will
overwrite your palette with system colors

@media (forced-colors: active) {}
@media (forced-colors: none) {}

forced-colors

Media query intent:

• Resolve colors for SVG icons

• Retain custom colors for critical features
(ex. product color swatches)

• Resolve issues from lost color (ex. replace
box-shadows with borders)

forced-colors

Removed/changed properties:

• box-shadow and text-shadow compute to none

• background-image computes to none unless the
original value contains a url() function

• color-scheme computes to “light dark”

• scrollbar-color and accent-color computed to auto

forced-colors

Force-adjusted color properties:

• color

• fill

• stroke

• text-decoration-color

• text-emphasis-color

• border-color

• outline-color

• column-rule-color

• scrollbar-color

• -webkit-tap-highlight-
color

• background-color

• caret-color

• flood-color

• lighting-color

• stop-color

forced-colors

System colors

• Canvas and
CanvasText

• LinkText, VisitedText,
and ActiveText

• ButtonFace,
ButtonText,
ButtonBorder

• Field and FieldText

• Highlight and
HighlightText

• SelectedItem and
SelectedText

• Mark and MarkText

• GreyText

Authoring for Feature Queries
prefers-color-scheme

Provide darker and lighter versions that still fully
use brand colors and high-fidelity visuals

prefers-contrast
Provide “more” and “less” contrast versions that
may require modified palettes and assets

forced-colors
Only use to correct for loss or change of
color in critical elements

prefers-contrast vs. forced-colors

prefers-contrast
User still wants to see your design and colors,
but adjusted to the contrast preference

forced-colors
User requires using their own color palette
for improved usability

Authoring for Feature Queries
Chain feature queries when needed

@media (prefers-color-scheme: dark) and
(prefers-contrast: more) {}

@media (prefers-color-scheme: light) and
(prefers-contrast: less) {}

Topics
01 Focus Visibility

02 Focus vs. Source Order

03 Desktop Zoom and Reflow

04 Respecting User Preferences

Setup consistent,
customizable :focus
styles using custom
properties

Topics
01 Focus Visibility

03 Desktop Zoom and Re

02 Focus vs. Source Order

flow

04 Respecting User Preferences

Learned about
order-breaking
properties and to
change order in the
source

Topics
01 Focus Visibility

02 Focus vs. Source Order

03 Desktop Zoom and Reflow

04 Respecting User Preferences

Traded px for vh and
%, using CSS
functions for dynamic,
contextual spacing

Topics
01 Focus Visibility

02 Focus vs. Source Order

03 Desktop Zoom and Reflow

04 Respecting User Preferences

Considered feature
queries and their
benefits for
inclusive design

Modern CSS Upgrades
to Improve Accessibility

Stephanie Eckles (she/her)
@5t3ph • ModernCSS.dev

Demos & Links

ModernCSS.dev/axecon22

https://moderncss.dev/
https://ModernCSS.dev/axecon22

	Modern CSS Upgrades to Improve Accessibility
	About Me
	Topics
	Focus Visibility
	2.4.7: Focus Visible
	2.4.11: Focus Appearance (Minimum)
	Draft in WCAG 2.2

	2.4.11: Focus Appearance (Minimum)
	Minimum area
	Outline
	Shape

	TL;DR for minimum area
	Contrasting area
	Adjacent contrast

	Ensuring Visible Focus with Modern CSS
	Step 1:
	Step 2:
	Step 3:

	A note about :focus-visible

	Topics
	Focus vs Source Order
	2.4.3: Focus Order

	Potential focus order breaking scenarios
	Altering placement with

	How to ﬁx focus order?

	Topics
	Desktop Zoom and Reﬂow
	1.4.10 Reﬂow

	Desktop at 400% Zoom vs. iPhone SE
	Reﬂow vs. Responsive Design
	Reframing expectations

	Media queries and reﬂow
	Potential reﬂow breaking scenarios
	Reﬂow and Section Spacing
	px/rem vs. vh
	Modern CSS Section Spacing
	Modern CSS Element Padding

	Topics
	Respecting User Preferences
	Motion Criteria
	2.3.1 Three Flashes or Below Threshold
	2.3.3 Animation From Interactions

	prefers-reduced-motion
	Motion reset
	Testing results of prefers-reduced-motion
	In Chromium, found under More Tools > Rendering

	Color and Contrast Criterion
	1.4.3 Contrast Minimum

	Color and Contrast Feature Media Queries
	prefers-color-scheme
	Related property: color-scheme
	prefers-contrast
	no-preference
	custom
	“less”
	“more”

	forced-colors
	Media query intent:
	Removed/changed properties:
	Force-adjusted color properties:
	System colors

	Authoring for Feature Queries
	prefers-color-scheme
	prefers-contrast
	forced-colors

	prefers-contrast vs. forced-colors
	prefers-contrast
	forced-colors

	Authoring for Feature Queries
	Chain feature queries when needed

	Topics
	Modern CSS Upgrades to Improve Accessibility

