
Building Accessible Android
Apps with Jetpack Compose

Ally

Talkback

Android

Switch
Access

Compose

What is Jetpack Compose?

Modern Android UI toolkit for building native Android UI faster and easier
by using intuitive DECLARATIVE Kotlin APIs.

Which means no more xml or imperative type view building.

Imperative

Declarative

Why Jetpack Compose?

• Faster and easier Android UI development(especially for developers like
me!)

• Easy to use intuitive Kotlin APIs

• Easy to catch bugs in UI

• Less code(Who doesn’t like that?)

• Built-in support for Material Design, Dark Theme and Animation

Also…

• Gives you the ability to build custom UI

• Easy to create reusable UI components

What about Accessibility?
Compose gives immense power to developers to build literally any type of UI without
worrying about increasing code and maintainability but…

The responsibility of making our applications accessible for every user

How Accessibility Services work in Android?
• Accessibility Services like: Talkback or SwitchAccess
• It is a service when turned on runs in the background and responds to the Accessibility Events like click, focus, tap and

hold, etc.
• The screen/window content is arranged in a tree and each node in the tree is represented as an AccessibilityNodeInfo.

Source: blog.intuit.com

• As the name suggests AccessibilityNodeInfo provides all the accessibility related info to the Accessibility Service for a
particular node in the tree.

• Information like: Name, Role, value, Action.
• Android highly recommends that: “Accessibility services should only be used to assist users with disabilities in using

Android devices and apps.”

https://blog.intuit.com

How Imperative(or xml) type UI
interacts with Accessibility
Services in Android?

Imperative UI with Accessibility Service

For each and every view in the view hierarchy the accessibility service has
to extract the information which is going to define its behavior with
Accessibility Technology like Talkback or SwitchAccess.

Imperative type UI

For this text view an Accessibility Node Info will
be created which will have following info:
- text: Already have an account login
- isImportantForAccessibility: true
- boundsInScreen, etc.

How Jetpack Compose interacts
with Accessibility Services in
Android?

Semantics in Compose
Semantics are the information source for Accessibility services like Talkback or Switch Access to
gather data from. It does NOT define information on how the composable will be drawn.

How Android Accessibility Services work with Compose?

Android creates a compose hierarchy tree which
helps the accessibility service to figure out:
• The order of iteration from one composable

to another.
• What to announce when a composable is

focused or to focus a composable or not.
• What actions can be taken for a particular

composable, for example: Click, check or
custom accessibility actions(hmm!!
Interesting..)

• Basically every information that
AccessibilityNodeInfo requires to represent
itself in the Tree.

User Interface

Semantics Tree

Source: https://developer.android.com/jetpack/compose/semantics

Compose allows you to look at the composition hierarchy with just one line of code

https://developer.android.com/jetpack/compose/semantics

Merged and Unmerged Composition Hierarchy example

Simple button in compose

Merged and Unmerged Composition Hierarchy example

Merged Composition Hierarchy

Unmerged Composition Hierarchy

Accessibility Service refers to the merged composition hierarchy
To gather information for a composable.

Composition hierarchy can be extracted while running the automated tests(we will see that later)

Enough talking, show me some code

Using Modifier of a composable one
can set semantics of a composable

In the above example “role” is one of the SemanticsPropertyKeys which sets the role of that row to Button so that when
Talkback or SwitchAccess focuses on that row it will be announced as Button and hence action will be announced as “Double
Tap to Activate”
There are many other useful Semantics Properties like:
• ContentDescription
• StateDescription: usually with switch(on/off) or checkbox(checked/unchecked)
• Heading
• Disabled
• IsPopup

One does not have to add all the semantic properties one by one, most of them are inherited from the parent

Buttons
The first button is accessible because talkback announces: “Accessible, Button.
Double tap to activate.” So the
name: “Accessible”,
role: “Button” and
action: “Double Tap to activate”
of the button are announced by the Talkback. This how it looks like in code:

The “onClick” defines the action associated to the button and Actions are part of semantics similar to role.

Buttons
The second button is a simple row which is acting like a button but
remember it is our responsibility to set the Role semantics property of the
row to “Button”. The button is accessible because the name, role and action
are announced by the Talkback. This is how that button looks like in code:

A Row in Jetpack Compose refers
to a collection on Composables
arranged one below another.
If the Row choose to merged the
descendants of a row then the
Accessibility Service treats it like
One single element.

Talkback announces: “Accessible, Button. Double tap to activate.”

Rows and Columns
A Row is a layout composable that places its children in a
horizontal sequence.
A Column is a layout composable that places its children in a
vertical sequence.

The buttons are arranged in a Column. That is one below another.
This helps talkback in determining the order of focus.

The buttons are arranged in a Row.
This helps talkback in determining the order of focus.

Buttons
If a composable is set to “invisibleToUser” the Accessibility
Technology ignores the composable. For the third button I have
marked the text composable of the button as invisibleToUser.
Since there is no name associated to the composable Talkback
ignores it.

TextField/EditText
The first TextField is accessible because talkback announces: “EditBox, Enter
Your Name. Double tap to Edit, Double Tap and Hold for more editing options”.
Again the name, role and action of are announced by the Talkback.
The text “Enter your name” is associated to the TextField as a label.
This how it looks like in code:

The “onClick” defines the action associated to the button and Actions are part of semantics similar to role.

Labels in TextField/EditText
Accessibility guidelines require labels to persist even when
there is text entered into the EditText. Compose does a
pretty good job with keeping the label intact all the time.

TextField/EditText
The second TextField is accessible because talkback announces: “EditBox, Email
Address. Double tap to Edit, Double Tap and Hold for more editing options”.
Again the name, role and action of are announced by the Talkback.
The text “Enter your name” is associated to the TextField as a label.
This how it looks like in code:

If we provide a content
Description to the email
Icon then that will also be
announced along with the
text “Email address”

TextField/EditText
The third TextField is inaccessible because talkback announces:
“EditBox, Double tap to Edit, Double Tap and Hold for more editing
options”. The label “name” is not part of the TextField. So “Name” is
announced separate from the TextField. This how it looks like in code:

In the above example we can merge the descendants of the row but that will make Talkback announce: “Name”
Role and Action will not be announced which makes the TextField inaccessible.

Merging Descendants
Compose allows us to merge descendants of a composable so that they
can be read as one element by Talkback. For example:

Unmerged descendants Merged descendants

Which means…

Merging Descendants

Talkback focuses the text and the
textfield separately.

Unmerged descendants

Talkback groups the text and the
Textfield when focusing.

Merged descendants

Be careful while merging descendants, magic happens in certain cases.

Switch
The first Switch is accessible because talkback announces: “On,
Get Emails, Switch, Double Tap double tap to toggle.” Creating an
accessible Switch in compose is not trivial.

Note that the descendants of the
Row are merged.

The text is acting like a switch and
I have used “toggleable” type modifier
to tell the Talkback that by clicking on the
text the switch can be toggled.

Since the toggling is happening
through the text I have cleared the
semantics of the switch.

If the semantics of the switch are not
cleared then Talkback focuses on the switch
separately.

Switch
The third Switch has “toggleable” type modifier set for the parent row which by
default add the state “off” to the switch. So the Talkback announces: “On, Get Emails,
off, Switch…” notice how “off” state is attached even when the switch is in On state.

Note that the descendants of the
Row are merged.

The Row is acting like a switch and
I have used “toggleable” type modifier
to tell the Talkback that by clicking on the
text the switch can be toggled.

Checkbox
Creating an accessible checkbox in compose is pretty easy. The first checkbox
in screenshot announces: “checked, marketing emails, Checkbox, Double tap
to toggle.”. So all three name, state and action are announced by the
Talkback.

The Row is acting like a Checkbox and
I have used “toggleable” type modifier
to tell the Talkback that by clicking on
anywhere on the row the Checkbox
can be toggled.

Note that the descendants of the
Row are merged.

Checkbox
Creating an accessible checkbox in compose is pretty easy. The first checkbox
in screenshot announces: “checked, marketing emails, Checkbox, Double tap
to toggle.”. So all three name, state and action are announced by the
Talkback.

Note that the descendants of the
Row are merged.

Talk back first focuses on the whole
Row and then on next right swipe it
focuses on just the switch.

Custom Accessibility Actions
Compose allows us to set custom accessibility actions on composable. Consider a scenario
where you want to create a beautiful mark as favorite button on top of an item which
actually when clicked takes you to some other screen. So we have to tell Accessibility
Service that there are more actions associated to the view and politely ask it to handle those
multiple actions.

Setting custom accessibility
action for the row.

Custom accessibility action for the
mark as favorite button.

Custom Accessibility Actions
Swiping up and right gives more options
to select from.

This text is listed as one of
the custom actions.

Custom Accessibility Actions with imperative type views
Creating custom accessibility actions in imperative(or xml) type views
is not easy and requires a lot of testing as well as coding efforts.

class AccessibilityNodeInfoExt : AccessibilityDelegateCompat() {
override fun onInitializeAccessibilityNodeInfo(

host: View?,
info: AccessibilityNodeInfoCompat?

) {
super.onInitializeAccessibilityNodeInfo(host, info)

val action = AccessibilityNodeInfoCompat.AccessibilityActionCompat(
AccessibilityNodeInfoCompat.ACTION_CLICK, host?.context?.getString(R.string.archive_email)

)

info?.addAction(action)
}

}

Screen Orientation
Imagine a phone or a tablet mounted on a wheel chair in horizontal orientation.

How to get the Composition Hierarchy?

To print unmerged tree

To print merged tree

Sample Automated test for compose

How should I test my application?
• Use Accessibility Services like Talkback or Switch Access to test your application.

• Remember, an app’s experience should be identical as a non-AssistiveTechnology
user and an AssistiveTechnology user.

What do we do at Deque?
• We develop native Android and iOS libraries which help in detecting

accessibility bugs in real time applications.

• Our main focus with the library is to help our customers integrate
the library with minimum amount of effort.

• The library can be integrated with any type of automated testing
suite be it espresso tests or Appium tests.

• Good News: Our library supports Jetpack compose.

• One can begin testing their application with just one line of code:

What do we do at Deque?
• We also have a pretty intuitive dashboard and documentation

which helps in understanding the accessibility issues and
directions on how to fix them.

Questions

Connect with me

chandradevanshu

devchan4188

devanshu-chandra-
84747441

https://twitter.com/chandradevanshu
https://github.com/devchan4188
https://www.linkedin.com/in/devanshu-chandra-84747441

	Building Accessible Android Apps with Jetpack Compose
	What is Jetpack Compose?
	Why Jetpack Compose?
	Also…
	What about Accessibility?
	How Accessibility Services work in Android?
	How Imperative(or xml) type UI interacts with Accessibility Services in Android?
	Imperative UI with Accessibility Service

	How Jetpack Compose interacts with Accessibility Services in Android?
	Semantics in Compose
	How Android Accessibility Services work with Compose?
	Merged and Unmerged Composition Hierarchy example
	Enough talking, show me some code
	Buttons
	Rows and Columns
	Buttons
	TextField/EditText
	Labels in TextField/EditText
	TextField/EditText
	Merging Descendants
	Switch
	Checkbox
	Custom Accessibility Actions
	Custom Accessibility Actions with imperative type views

	Screen Orientation
	How to get the Composition Hierarchy?
	How should I test my application?
	What do we do at Deque?
	Questions
	Connect with me

