

Creating Accessible
React Native Apps

Insight into testing and implementing accessibility best practices for React Native apps

Scott Vinkle…
● Platform Accessibility Specialist

● 🐦 @svinkle, 📝 ScottVinkle.me

● 🚴♂️, 📚, 📺🍿, 👨👩👧👨👩👧👦

https://ScottVinkle.me

Agenda

1. What? …is digital accessibility
2. Who? People with disabilities, understanding

disability, assistive technology

3. How? Testing with mobile screen readers,

testing with simulators, what to watch for

4. React Native specifics

a. Documentation

b. Roles

c. Labels

d. States

e. …and more!
5. Questions?

What is Digital Accessibility?

1.85 B
“With an estimated population of 1.85

billion, people with disabilities (PWD) are
an emerging market larger than China”

$13 T
“The Disability Market influences over

$13 trillion in annual disposable income.”

Design Delight from Disability - 2020 Annual Report: The Global Economics of Disability

https://www.rod-group.com/content/rod-research/edit-research-design-delight-disability-2020-annual-report-global-economics

Who requires Digital Accessibility?

Types of disabilities

● Visual

● Hearing

● Cognitive

● Motor

● And may more and/or a
combination

Disability is not binary

How do people with disabilities use
technology?

Assistive technologies

● Screen readers

● Keyboard-only

● Screen magnification

● Voice dictation

● Many, many more

“We need to build for
everyone, with everyone,
not only because it is the
right thing to do, but also
because it drives
innovation and growth
while making the world a
better, richer place.”
– Annie Jean-Baptiste

How do we make things accessible?

1. What is this thing?

● Context must be shared to
understand what the thing is

○ Role (ex., button)

○ Name (ex., “Submit”)

○ State (ex., disabled)

The accessible name/label/text
equivalent

The element role

The current state

2. What happens when
I click the thing?

● Affordances are based on the
visual and aural experience

● The semantics of the control in
question, as well as the visual
affordance, indicate to the user
what might happen on click

3. Did clicking the thing
meet my expectations?

● Did the interaction result in what
the user had in mind

● Was the user “successful” or not

● Avoid having the user question app
quality and self doubt – guide the
user in being successful

1. Understanding what the thing is

2. Knowing what’s expected when
the thing is clicked, and

3. Having user expectations met as
a result.

Testing with Mobile Screen Readers

Before you start…
Navigation methods:

1. Explore: Single finger, drag to find and content.

2. Swipe: Single finger, swipe gesture left or right to find content

When a control is in focus, double tap anywhere to activate.

iOS – VoiceOver

Enable VoiceOver:

1. Settings
2. Accessibility
3. VoiceOver

Shortcut:

1. Settings
2. General
3. Accessibility
4. Accessibility Shortcut

Triple-press the Home button.

Android – TalkBack

Enable TalkBack:

1. Settings
2. Accessibility
3. TalkBack

Shortcut:

1. Settings
2. Accessibility
3. TalkBack
4. TalkBack Shortcut

Press and hold both volume buttons.

VoiceOver Common Gestures

Action Gesture

Select/read the item Touch/single tap

Activate the currently selected item Double-tap

Move to the next item Swipe-right

Move to the previous item Swipe-left

Pause/resume reading Two-finger tap

Scroll up Three-finger swipe up

Scroll down Three-finger swipe down

TalkBack Common Gestures

Action Gesture

Select/read the item Touch/single tap

Activate the currently selected item Double-tap

Move to the next item Swipe-right

Move to the previous item Swipe-left

Scroll up Two-finger slide up

Scroll down Two-finger slide down

Testing with Simulators

macOS Accessibility Inspector

● Inspect the UI like browser dev
tools

● Displays how your app “sounds”
while using a screen reader

● Open via Spotlight Search and type
“Accessibility Inspector”

● Click crosshair icon button then
hover over the UI to be tested

iOS Simulator VoiceOver

1. Focus on simulator window

2. Start (and stop) VoiceOver with
Cmd + F5

3. Press Ctrl + Opt then Left or Right
to move around

4. Press Ctrl + Opt then Space to
interact

Gestures

● Pinch-zoom/swipe: Hold the Opt
key and drag the mouse

Android Emulator
TalkBack

1. Install Android Accessibility Suite

2. Load your app

3. Enable TalkBack: Settings →
Accessibility → TalkBack

Gestures

● Pinch-zoom/swipe: Hold the Opt
key and drag the mouse

● Mouse click and drag to “swipe”

Tip!

● Use device image with Play Store!

💭
🤔

ReactNative.dev/docs/accessibility

https://reactnative.dev/docs/accessibility

Adding semantics:
role, name, state

Clickable things…

if (Platform.OS === 'android') {

return (

<Ripple

onPress={onPressHandler} ...>

{content}

</Ripple>

);

}

return (

<TouchableOpacity

onPress={onPressHandler} ...>

{content}

</TouchableOpacity>

);

Adding a role

● Apply the accessibilityRole
prop to the clickable component

● Provide a string value appropriate
for the context in question

● Value must be valid according to
the API (checkbox, radio, etc)

● Equivalent to the role attribute in
HTML

<TouchableOpacity
accessibilityRole=“button”
…

>
Enter code

</TouchableOpacity>

Before:
🗣 “Enter code”

After:
🗣 “Enter code, button”

https://reactnative.dev/docs/accessibility#accessibilityrole
https://reactnative.dev/docs/accessibility#accessibilityrole
https://reactnative.dev/docs/accessibility#accessibilityrole
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles
https://reactnative.dev/docs/accessibility#accessibilityrole

Add a name

● Apply the accessibilityLabel
prop to the clickable component

● Provide a string value describing
the purpose of the control

● Value defined by the author

● Equivalent to the aria-label
attribute in HTML

<TouchableOpacity
accessibilityLabel=“Close”
accessibilityRole=“button”
…

>
<!-- Icon… -->

</TouchableOpacity>

Before:
“…”

After:
“Close, button”

🗣 🤷♂️

🗣

Add state

● Apply the accessibilityState
prop to the clickable component

● Provide an object with boolean
value for the state definition

● Object definition must be valid
according to the API (disabled,
selected, etc)

● Equivalent to ARIA state attributes
in HTML

<TouchableOpacity
accessibilityRole=“button”
accessibilityState={disabled: true}
…

>
Submit code

</TouchableOpacity>

Before:
🗣 “Submit code”

After:
🗣 “Submit code, dimmed,
button”

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques#states_and_properties

Headings

People who depend on assistive
technology often navigate by

headings first.

Adding a heading

● Apply the accessibilityRole
prop to the component

● Provide the string value, “header”

● Heading level concept doesn’t exist

● Equivalent to the role=”heading”
attribute in HTML

<Text

…
accessibilityRole="header"

>

Share your random IDs

</Text>

Before:
🗣 “Share your random IDs”

After:
🗣 “Share your random IDs, heading”

Hint Text

When a new browser
tab/window/app opens on click, let

the user know.

Give power to the user—let them
decide how they’d like to proceed.

Including hint text

● Apply the accessibilityHint
prop to the component

● Provide a string value with the hint
text

● Value defined by the author

● Equivalent to the upcoming aria-
description attribute in HTML

<TouchableOpacity

…
accessibilityHint="Opens in a new window"

accessibilityRole="link"

>

Check symptoms

</TouchableOpacity>

Before:
🗣 “Check symptoms”

After:
🗣 “Check symptoms, opens in a
new window, link”

Focus Management

gatsbyjs.com/blog/2019-07-11-user-testing-accessible-client-routing

https://www.gatsbyjs.com/blog/2019-07-11-user-testing-accessible-client-routing/

Shift focus to a
heading

Focusing on a heading

● Covid Alert uses a custom
accessibilityAutoFocus prop to
set heading focus

● This is not part of Facebook’s API

● Might be other options available

<Text

…
accessibilityRole="header"

accessibilityAutoFocus

>

Share your random IDs

</Text>

Hiding things?

Accessibility issues…
1. TextInput missing role and name

2. TouchableWithoutFeedback
missing role and name

3. 0 pixel input did not display a
visible focus indicator

4. TouchableWithoutFeedback
created extra focusable tab-stop

<TextInput
value={value}
ref={inputRef}
...

/>
<TouchableWithoutFeedback

onPress={giveFocus}>
// ...

</TouchableWithoutFeedback>

Accessibility recommendations…
1. Add accessibilityLabel to TextInput

2. Adjust styles for screen reader
discoverability/role

3. Hide the clickable control via
accessibilityElementsHidden (for iOS) and
importantForAccessibility (for Android)
props

This is similar to HTML’s aria-hidden=“true” +
tabindex=“-1”.

<TextInput

accessibilityLabel="Covid Shield Code"

...

/>

<TouchableWithoutFeedback

accessibilityElementsHidden={true}

importantForAccessibility="no-hide-descendants"

...

>

// ...

</TouchableWithoutFeedback>

Before:
🗣 “…” 🤷♂️

After:
🗣 “Covid Shield Code, edit box”

Accessibility is more than screen
readers…

● ✅ Font size

● ✅ Color inversion

● ✅ Reduce motion

● … and more!

Thank you! 🙂

	Creating Accessible React Native Apps
	Scott Vinkle…
	Agenda

	What is Digital Accessibility?
	Who requires Digital Accessibility?
	Types of disabilities

	How do people with disabilities use technology?
	Assistive technologies

	How do we make things accessible?
	The accessible name/label/text equivalent
	The element role
	The current state

	Testing with Mobile Screen Readers
	Before you start…
	iOS – VoiceOver
	Android – TalkBack
	VoiceOver Common Gestures
	TalkBack Common Gestures

	Testing with Simulators
	macOS Accessibility Inspector
	iOS Simulator VoiceOver
	Gestures
	Android Emulator TalkBack
	Gestures
	Tip!

	Adding semantics: role, name, state
	Clickable things…
	Adding a role
	Add a name
	Add state

	Headings
	Adding a heading

	Hint Text
	Including hint text

	Focus Management
	Focusing on a heading

	Hiding things?
	Accessibility issues…
	Accessibility recommendations…
	Accessibility is more than screen readers…

