
WCAG

ARIA
ADA

508

AUDIT

SwiftUI & Accessibility:
Goodies and Gotchas
Kate Owens
iOS Engineer - Deque Systems

1

Agenda

• Brief overview of SwiftUI
• SwiftUI and accessibility
• Goodies & Gotchas

2

SwiftUI
A brief overview

3

What’s the story with SwiftUI?

• Announced in 2019 at WWDC
• Declarative syntax
• No more constraints!
• Create beautiful views with much less code
• The code is very handsome and readable

4

SwiftUI and accessibility
overview

5

Accessibility in SwiftUI

• Most elements are VoiceOver and other assistive technology (i.e.
switch control, VoiceControl) focusable

• Most elements have a11y labels by default
• Not all custom controls are focusable and labeled by default
• Somewhat decent accessibility experience out of the box, but not

great - it could be a lot better

6

Goodies & Gotchas
Things I learned from creating an accessible SwiftUI iOS app

7

Quick Note

8

Plantiverse - an Accessible SwiftUI App

• To demonstrate SwiftUI accessibility goodies and gotchas, I’ll be
using Plantiverse - a simple SwiftUI app I created to get familiar with
accessibility in SwiftUI

• Plantiverse is public - feel free to clone it if you want to play around
with the accessibility!

• Repo: https://github.com/kateowens12/Plantiverse

9

https://github.com/kateowens12/Plantiverse

Goodies & Gotchas: A Brief Overview

10

What is a Goodie? What is a Gotcha?

• Goodie
• makes it easier for a developer to make accessibility changes that

improve the accessibility experience
• Gotcha

• makes it easier for a developer to make an accessibility mistake,
possibly without even realizing it. Gotchas are sneaky

• A Goodie can also become a Gotcha if it’s not used correctly

11

Goodies

12

Goodie #1: Default Basic Accessibility

• Accessibility Notifications handled automatically
• Most elements are automatically marked as accessibilityElements
• Default controls and elements (ex. Button, Toggle, TextField, Image):

• Automatically focusable with an AT (Assistive Technology)
• Assigned an action if applicable
• Assigned a default accessibility label

• Custom controls:
• Automatically given an accessibility label from the Text

13

Gotcha In Action: Default Basic Accessibility

14

Goodie #2: Accessibility Representation API

• Replaces accessibility elements in a view with another
• e.g. replace a custom toggle’s accessibility elements with a

standard Toggle’s accessibility elements
• Uses a non-interactive, hidden view specified in a closure to

generate accessibility elements
• Accessibility Representation API makes it much simpler to make

custom controls fully accessible

15

Goodie in Action: Accessibility Representation API

Without the accessibilityRepresentation API,
the default announcement for this custom Toggle is:
“Plant is repotted, Circle, Image”

Without the accessibilityRepresentation API,
the default announcement for this custom Slider is:
“Window Distance, In Window” and slider control is
Not focused with VoiceOver

16

Goodie #3: Accessibility Custom Content

• Accessibility Custom Content API is a way to provide information to
users in smaller, more specific portions when they need it
• Ex. Plant tile contains the name, health, category, and tasks due,

but a user might not want to know all of that data every single
time an element is focused

• Views with somewhat complex data sets:
• Can be overwhelming to navigate using an AT
• May be providing more information than a user needs each time

an element is focused with an AT

17

Goodie in Action: Accessibility Custom Content

If we don’t use the accessibilityCustomContent API,
The default announcement for this element is:
“Monstera Deliciosa, button, repot, great, houseplant”

18

Goodie #4: Accessibility Sort Priority

• Changes the sort order for accessibility elements
• Only use this when it makes sense for the user experience in terms

of navigation and semantic views
• I.e. Will the user have more context/a better experience if one

element is focused before or after another?

19

Accessibility Sort Priority in Action
Exhibit A:

accessibilitySortPriority
set for edit button in
toolbar

Exhibit B:

accessibilitySortPriority
NOT set for edit button
in toolbar

20

Goodie #5: Accessibility Preview

• Allows you to preview the accessibility properties of a view right
from Xcode - no running the app required!
• accessibilityLabel
• accessibilityValue
• accessibilitySortOrder

• Can save time - you can have an idea of what the a11y properties are
without needing to run the app

21

Goodie in Action: Accessibility Preview

22

Goodies

• Default basic accessibility
• Accessibility Representation API
• Accessibility Custom Content
• Accessibility Sort Priority
• Accessibility Preview

23

Gotchas

24

Gotcha #1: Default Basic Accessibility

• Default accessibilityLabel doesn’t always make sense without additional
information or context

• The order in which elements are focused with an AT doesn’t always result in a
logical, easily navigable experience

• Some elements make more sense when they are grouped together/contained
in a certain way

• Certain types of custom controls do not always have the same default basic
accessibility capabilities that others do
• i.e. one type of custom control may be activated with an AT by default,

while another type may not
• Decent out of the box basic accessibility != great accessibility experience for

users

25

Gotcha In Action: Default Basic Accessibility

A lot of repeated information

Elements in containing views are not grouped
together

Custom toggle announcement doesn’t make it clear
that it’s a button

Custom slider control cannot be focused with
VoiceOver

26

Gotcha #2: Accessibility Sort Priority

• Changes the order in which accessibility elements are focused with an AT
• Use this with EXTREME caution and lots of thought and care

• Which elements and in what order would a user want to navigate
through them?

• Which order makes the most sense?
• Which sort order provides all the necessary context?

• If used incorrectly .accessibilitySortPriority can make an app very confusing
and/or inefficient for a user using an assistive technology to navigate

• Don’t choose the sort priority based on where you WANT users to swipe to
first - choose based on what would make the most semantic sense to the
user

27

• Only use this modifier if it will make your app easier and more logical
to navigate
• Never use this modifier to increase prominence or consumption

rate of something that’s revenue generating - accessibility sort
priority is here to make your app more navigable, not to
manipulate the user experience to increase revenue or eyeballs
on something

• Ex. In a paid app scenario - don’t change the sort priority to focus
on a ‘pay’ button first if it doesn’t make logical sense for
navigation

Gotcha #2: Accessibility Sort Priority continued

28

• If a view contains multiple instances of a view that’s frequently
focused on with an AT, consider using the
accessibilityElement .contain modifier to avoid a potentially
repetitive, cumbersome navigation experience

Gotcha #2: Accessibility Sort Priority continued

29

Gotcha In Action: Accessibility Sort Priority continued

30

Exhibit A:

The room heading may seem like a
good candidate for
accessibilitySortPriority to focus the
room name before the buttons on
either side.

However, it’s not! This makes a
cumbersome experience when
navigating to another room in our
Plantiverse - we must swipe through
each room heading, each element
within that heading, then each plant
tile within that room.

That is A LOT of swiping!!

Exhibit B:

If we use
the .accessibilityChildren(.contain)
behavior instead, we can swipe
through each room heading as a
singular element, rather than each
room heading and then each of the
elements within the heading

Gotcha #3: SF Symbol Images

• Image element’s systemName initializer creates an image using an
SFSymbol

• The systemName is used as the accessibilityLabel for the element
unless otherwise specified

• Use an a11y label modifier on the Image to remedy this

31

Gotcha In Action: SFSymbol Images

32

Gotcha #4: Text Based Image Overlays

• When using an image overlay that contains Text, be certain that the
color contrast ratio is passing
• Adding an accessibility label in this scenario will not resolve a

color contrast failure - sighted, low-vision users who don’t use a
screen reader will not be able to consume this information

33

Gotcha in Action: Text Based Image Overlays

The color of this text overlay
does not contrast enough!

34

	SwiftUI & Accessibility: Goodies and Gotchas

