deque O

SwiftUl & Accessibility:
Goodies and Gotchas

Kate Owens
I0S Engineer - Deque Systems

Agenda

e Brief overview of SwiftUl
« SwiftUl and accessibility
e Goodies & Gotchas

o Oo——

s

SwiftUI

A brief overview

What's the story with SwiftUl?

Announced in 2019 at WWDC

Declarative syntax

No more constraints!

Create beautiful views with much less code

The code is very handsome and readable

iftUl and accessibility
overview

Accessibility in SwiftUl

 Most elements are VoiceOver and other assistive technology (i.e.
switch control, VoiceControl) focusable

« Most elements have ally labels by default
« Not all custom controls are focusable and labeled by default

« Somewhat decent accessibility experience out of the box, but not
great - it could be a lot better

Goodies & Gotchas

Things | learned from creating an accessible SwiftUl iOS app

Quick Note

deque

Plantiverse - an Accessible SwiftUl App

« To demonstrate SwiftUl accessibility goodies and gotchas, I'll be

using Plantiverse - a simple SwiftUl app | created to get familiar with
accessibility in SwiftUlI

« Plantiverse is public - feel free to clone it if you want to play around
with the accessibility!

e Repo: https://github.com/kateowens12/Plantiverse

https://github.com/kateowens12/Plantiverse

Goodies & Gotchas: A Brief Overview

deque

What is a Goodie? What is a Gotcha?

« Goodie

« makes it easier for a developer to make accessibility changes that
improve the accessibility experience

e Gotcha

« makes it easier for a developer to make an accessibility mistake,
possibly without even realizing it. Gotchas are sneaky

« A Goodie can also become a Gotcha if it’s not used correctly

Goodies

deque

12

Goodie #1: Default Basic Accessibility

« Accessibility Notifications handled automatically
« Most elements are automatically marked as accessibilityElements
« Default controls and elements (ex. Button, Toggle, TextField, Image):
o Automatically focusable with an AT (Assistive Technology)
« Assigned an action if applicable
» Assigned a default accessibility label
e Custom controls:
« Automatically given an accessibility label from the Text

Gotcha In Action: Default Basic Accessibility

Plantiverseg

My Plantiverse

‘ Living Room ‘ ‘

Goodie #2: Accessibility Representation API

e Replaces accessibility elements in a view with another

e e.g.replace a custom toggle’s accessibility elements with a
standard Toggle’s accessibility elements

« Uses a non-interactive, hidden view specified in a closure to
generate accessibility elements

e Accessibility Representation APl makes it much simpler to make

custom controls fully accessible
.accessibilityRepresentation {

(isOn: $isRepotted) {
)

Goodie in Action: Accessibility Representation API

Add Plant
Plant Health Unspecified
Without the accessibilityRepresentation API, Plant Category Unspecified
the default announcement for this custom Toggle is:
“Plant is repotted, Circle, Image” —————)p [Plantis repotted O
Window Distance In window

Without the accessibilityRepresentation API, a
the default announcement for this custom Slider is: / \ _
“Window Distance, In Window” and slider control is

Not focused with VoiceOver 0inch

Pot Size

Plant is repotted, Switch button, off, Double tap to toggle s
L J

Goodie #3: Accessibility Custom Content

o Accessibility Custom Content APl is a way to provide information to
users in smaller, more specific portions when they need it

« Ex. Plant tile contains the name, health, category, and tasks due,
but a user might not want to know all of that data every single
time an element is focused

« Views with somewhat complex data sets:
e Can be overwhelming to navigate using an AT

« May be providing more information than a user needs each time
an element is focused with an AT

deque 17

Goodie in Action: Accessibility Custom Content

L © w

Plantiverse

My Plantiverse

If we don’t use the accessibilityCustomContent AP, ’ Living Room ‘
The default announcement for this element is:
“Monstera Deliciosa, button, repot, great, houseplant”

Goodie #4: Accessibility Sort Priority

« Changes the sort order for accessibility elements

e Only use this when it makes sense for the user experience in terms
of navigation and semantic views

« |.e. Will the user have more context/a better experience if one
element is focused before or after another?

Accessibility Sort Priority in Action

T @ m T @

Exhibit A: o Exhibit B: < Back e

accessibilitySortPriority Aloe Vera accessibilitySortPriority Monstera Delicosa
set for edit button in

toolbar \

NOT set for edit button

in toolbar \

Ca N
Plant Details Plant Details
Plant category: ~ Succulent -e: Plant category: Houseplant &
Plant Health: Good Plant Health: Great

Distance from Window: Unspecified
Distance from Window: 2 feet
Pot size: Unspecified

Pot size: inch .
6 Has this plant been repotted? No
Plantiverse, Back button Plantiverse, Monstera Delicosa, , Image
N N

20

Goodie #5: Accessibility Preview

« Allows you to preview the accessibility properties of a view right
from Xcode - no running the app required!

ityLabel
ityValue

e accessib

e accessib

itySortOrder

« Can save time - you can have an idea of what the ally properties are
without needing to run the app

e accessib

oodie in Action: Accessibility Preview

> Plantiverse

°] [] o

@ rPiantiverse) || Kate's iPhone

BB | < 3 PlantsGrid

GridView) 3 PlantsGrid) (P] body
\ el LCALNVLCN\ J)

Plantiverse) Plantiverse)

body: {
plants = room.plants
(columns: columns,
alignment: .
spacing: 16,
pinnedViews:

{
(plants.

id: \.) {1
(destination:
PlantDetailView
(plant:

room.plants[i])) {

PlantTile(plant:
room.plants

[i1)

Qa

M 2 8 < @ Plantiverse

deque

Running Plantiverse on Kate's iPhone

@ Preview

® ©

Aloe Vera

- succulent

Monstera Delicosa

@A repot Great

® houseplant

Snake Plant

@ repot Good - succulent

s$ = (@ PlantTile Multiple Sizes

Q 100% v &

32 characters

)

b © 6
Accessibility Element

Label Aloe Vera

Value None
Identifier None

Traits .isButton
Disabled true
Actions activate

Custom Content Plant Health: Good
Plant Category: succulent

Accessibility Element

Label Monstera Delicosa
Value None
Identifier None
Traits .isButton
Disabled true
Actions activate

Custom Content Plant Category: houseplant
Plant Health: Great
Tasks due: repot due

Accessibility Element

Label Snake Plant

Value None
Identifier None

Traits .isButton
Disabled true
Actions activate

Custom Content Plant Category: succulent
Tasks due: repot due
Plant Health: Good
Health Update: Health
update needed

Accessibility Element

Label Pothos

Value None
Identifier None

Traits .isButton
Disabled true
Actions activate

Custom Content Plant Category: houseplant
Tasks due: clean due

22

Goodies

Default basic accessibility

Accessibility Representation API

Accessibility Custom Content

Accessibility Sort Priority

Accessibility Preview

Gotchas

deque

24

Gotcha #1: Default Basic Accessibility

« Default accessibilityLabel doesn’t always make sense without additional
information or context

o The order in which elements are focused with an AT doesn’t always result in a
logical, easily navigable experience

« Some elements make more sense when they are grouped together/contained
in a certain way

o Certain types of custom controls do not always have the same default basic
accessibility capabilities that others do

« i.e.one type of custom control may be activated with an AT by default,
while another type may not

Decent out of the box basic accessibility != great accessibility experience for
users

deque 25

Gotcha In Action: Default Basic Accessibility
=)

Add Plant

A lot of repeated information

. .. . Plant Health Unspecified
Elements in containing views are not grouped
together Plant Category Unspecified
Custom toggle announcement doesn’t make it clear Plant is repotted O
that it’s a button

.) Window Distance In window
Custom slider control cannot be focused with s
VoiceOver \ _

0 inch

Pot Size

Add, Button

Gotcha #2: Accessibility Sort Priority

Changes the order in which accessibility elements are focused with an AT
Use this with EXTREME caution and lots of thought and care

« Which elements and in what order would a user want to navigate
through them?

« Which order makes the most sense?
« Which sort order provides all the necessary context?

« If used incorrectly .accessibilitySortPriority can make an app very confusing
and/or inefficient for a user using an assistive technology to navigate

« Don’t choose the sort priority based on where you WANT users to swipe to
first - choose based on what would make the most semantic sense to the
user

deque 27

Gotcha #2: Accessibility Sort Priority continued

e Only use this modifier if it will make your app easier and more logical
to navigate

« Never use this modifier to increase prominence or consumption
rate of something that’s revenue generating - accessibility sort
priority is here to make your app more navigable, not to
manipulate the user experience to increase revenue or eyeballs
on something

e Ex.In a paid app scenario - don’t change the sort priority to focus
on a ‘pay’ button first if it doesn’t make logical sense for
navigation

Gotcha #2: Accessibility Sort Priority continued

« If a view contains multiple instances of a view that’s frequently
focused on with an AT, consider using the
accessibilityElement .contain modifier to avoid a potentially
repetitive, cumbersome navigation experience

Gotcha In Action: Accessibility Sort Priority continued

«» =@
[© =@

Plantiverse

Plantiverse)

My Plantiverse

My Plantiverse

Exhibit A:
_
The room heading may seem like a ‘ Living Room ‘ | Exhibit B: E——
good candidate for ‘ Living Room ‘

accessibilitySortPriority to focus the If we use

room name before the buttons on the .accessibilityChildren(.contain)
either side. behavior instead, we can swipe
through each room heading as a
singular element, rather than each

room heading and then each of the

elements within the heading

However, it's not! This makes a
cumbersome experience when
navigating to another room in our
Plantiverse - we must swipe through
each room heading, each element
within that heading, then each plant
tile within that room.

S houseplant

My Plantiverse Plantiverse

That is ALOT of swiping!!

deque

Gotcha #3: SF Symbol Images

« Image element’s systemName initializer creates an image using an
SFSymbol

body: {

(systemName:

« The systemName is used as the accessibilityLabel for the element
unless otherwise specified

« Use an ally label modifier on the Image to remedy this

body: {
(systemName:

Gotcha In Action: SFSymbol Images

«» @

< Back Monstera Delicosa 0

D)

Plant Details

Plant category: Houseplant

Plant Health: Great

Distance from Window: Unspecified

Pot size: Unspecified

Has this plant been repotted? No

Plantiverse

Gotcha #4: Text Based Image Overlays

« When using an image overlay that contains Text, be certain that the
color contrast ratio is passing

« Adding an accessibility label in this scenario will not resolve a
color contrast failure - sighted, low-vision users who don’t use a
screen reader will not be able to consume this information

Gotcha in Action: Text Based Image Overlays

The color of this text overlay
does not contrast enough!

	SwiftUI & Accessibility: Goodies and Gotchas

