
WCAG

ARIA
ADA

508

AUDIT

SwiftUI & Accessibility:
Goodies and Gotchas
Kate Owens
iOS Engineer - Deque Systems

1

Agenda

• Brief overview of SwiftUI
• SwiftUI and accessibility
• Goodies & Gotchas

2

SwiftUI
A brief overview

3

What’s the story with SwiftUI?

• Announced in 2019 at WWDC
• Declarative syntax
• No more constraints!
• Create beautiful views with much less code
• The code is very handsome and readable

4

SwiftUI and accessibility
overview

5

Accessibility in SwiftUI

• Most elements are VoiceOver and other assistive technology (i.e.
switch control, VoiceControl) focusable

• Most elements have a11y labels by default
• Not all custom controls are focusable and labeled by default
• Somewhat decent accessibility experience out of the box, but not

great - it could be a lot better

6

Goodies & Gotchas
Things I learned from creating an accessible SwiftUI iOS app

7

Quick Note

8

Plantiverse - an Accessible SwiftUI App

• To demonstrate SwiftUI accessibility goodies and gotchas, I’ll be
using Plantiverse - a simple SwiftUI app I created to get familiar with
accessibility in SwiftUI

• Plantiverse is public - feel free to clone it if you want to play around
with the accessibility!

• Repo: https://github.com/kateowens12/Plantiverse

9

https://github.com/kateowens12/Plantiverse

Goodies & Gotchas: A Brief Overview

10

What is a Goodie? What is a Gotcha?

• Goodie
• makes it easier for a developer to make accessibility changes that

improve the accessibility experience
• Gotcha

• makes it easier for a developer to make an accessibility mistake,
possibly without even realizing it. Gotchas are sneaky

• A Goodie can also become a Gotcha if it’s not used correctly

11

Goodies

12

Goodie #1: Default Basic Accessibility

• Accessibility Notifications handled automatically
• Most elements are automatically marked as accessibilityElements
• Default controls and elements (ex. Button, Toggle, TextField, Image):

• Automatically focusable with an AT (Assistive Technology)
• Assigned an action if applicable
• Assigned a default accessibility label

• Custom controls:
• Automatically given an accessibility label from the Text

13

Gotcha In Action: Default Basic Accessibility

14

Goodie #2: Accessibility Representation API

• Replaces accessibility elements in a view with another
• e.g. replace a custom toggle’s accessibility elements with a

standard Toggle’s accessibility elements
• Uses a non-interactive, hidden view specified in a closure to

generate accessibility elements
• Accessibility Representation API makes it much simpler to make

custom controls fully accessible

15

Goodie in Action: Accessibility Representation API

Without the accessibilityRepresentation API,
the default announcement for this custom Toggle is:
“Plant is repotted, Circle, Image”

Without the accessibilityRepresentation API,
the default announcement for this custom Slider is:
“Window Distance, In Window” and slider control is
Not focused with VoiceOver

16

Goodie #3: Accessibility Custom Content

• Accessibility Custom Content API is a way to provide information to
users in smaller, more specific portions when they need it
• Ex. Plant tile contains the name, health, category, and tasks due,

but a user might not want to know all of that data every single
time an element is focused

• Views with somewhat complex data sets:
• Can be overwhelming to navigate using an AT
• May be providing more information than a user needs each time

an element is focused with an AT

17

Goodie in Action: Accessibility Custom Content

If we don’t use the accessibilityCustomContent API,
The default announcement for this element is:
“Monstera Deliciosa, button, repot, great, houseplant”

18

Goodie #4: Accessibility Sort Priority

• Changes the sort order for accessibility elements
• Only use this when it makes sense for the user experience in terms

of navigation and semantic views
• I.e. Will the user have more context/a better experience if one

element is focused before or after another?

19

Accessibility Sort Priority in Action
Exhibit A:

accessibilitySortPriority
set for edit button in
toolbar

Exhibit B:

accessibilitySortPriority
NOT set for edit button
in toolbar

20

Goodie #5: Accessibility Preview

• Allows you to preview the accessibility properties of a view right
from Xcode - no running the app required!
• accessibilityLabel
• accessibilityValue
• accessibilitySortOrder

• Can save time - you can have an idea of what the a11y properties are
without needing to run the app

21

Goodie in Action: Accessibility Preview

22

Goodies

• Default basic accessibility
• Accessibility Representation API
• Accessibility Custom Content
• Accessibility Sort Priority
• Accessibility Preview

23

Gotchas

24

Gotcha #1: Default Basic Accessibility

• Default accessibilityLabel doesn’t always make sense without additional
information or context

• The order in which elements are focused with an AT doesn’t always result in a
logical, easily navigable experience

• Some elements make more sense when they are grouped together/contained
in a certain way

• Certain types of custom controls do not always have the same default basic
accessibility capabilities that others do
• i.e. one type of custom control may be activated with an AT by default,

while another type may not
• Decent out of the box basic accessibility != great accessibility experience for

users

25

Gotcha In Action: Default Basic Accessibility

A lot of repeated information

Elements in containing views are not grouped
together

Custom toggle announcement doesn’t make it clear
that it’s a button

Custom slider control cannot be focused with
VoiceOver

26

Gotcha #2: Accessibility Sort Priority

• Changes the order in which accessibility elements are focused with an AT
• Use this with EXTREME caution and lots of thought and care

• Which elements and in what order would a user want to navigate
through them?

• Which order makes the most sense?
• Which sort order provides all the necessary context?

• If used incorrectly .accessibilitySortPriority can make an app very confusing
and/or inefficient for a user using an assistive technology to navigate

• Don’t choose the sort priority based on where you WANT users to swipe to
first - choose based on what would make the most semantic sense to the
user

27

• Only use this modifier if it will make your app easier and more logical
to navigate
• Never use this modifier to increase prominence or consumption

rate of something that’s revenue generating - accessibility sort
priority is here to make your app more navigable, not to
manipulate the user experience to increase revenue or eyeballs
on something

• Ex. In a paid app scenario - don’t change the sort priority to focus
on a ‘pay’ button first if it doesn’t make logical sense for
navigation

Gotcha #2: Accessibility Sort Priority continued

28

• If a view contains multiple instances of a view that’s frequently
focused on with an AT, consider using the
accessibilityElement .contain modifier to avoid a potentially
repetitive, cumbersome navigation experience

Gotcha #2: Accessibility Sort Priority continued

29

Gotcha In Action: Accessibility Sort Priority continued

30

Exhibit A:

The room heading may seem like a
good candidate for
accessibilitySortPriority to focus the
room name before the buttons on
either side.

However, it’s not! This makes a
cumbersome experience when
navigating to another room in our
Plantiverse - we must swipe through
each room heading, each element
within that heading, then each plant
tile within that room.

That is A LOT of swiping!!

Exhibit B:

If we use
the .accessibilityChildren(.contain)
behavior instead, we can swipe
through each room heading as a
singular element, rather than each
room heading and then each of the
elements within the heading

Gotcha #3: SF Symbol Images

• Image element’s systemName initializer creates an image using an
SFSymbol

• The systemName is used as the accessibilityLabel for the element
unless otherwise specified

• Use an a11y label modifier on the Image to remedy this

31

Gotcha In Action: SFSymbol Images

32

Gotcha #4: Text Based Image Overlays

• When using an image overlay that contains Text, be certain that the
color contrast ratio is passing
• Adding an accessibility label in this scenario will not resolve a

color contrast failure - sighted, low-vision users who don’t use a
screen reader will not be able to consume this information

33

Gotcha in Action: Text Based Image Overlays

The color of this text overlay
does not contrast enough!

34

Gotcha #5: Pobody’s Nerfect

• There’s no substitution for experiencing your app’s accessibility first
hand context is also very important - the human element of creating
an accessible swiftUI app will always be crucial regardless of how
mature, stable, robust the language is

• NEVER operate on the assumption that everything is working
flawlessly

• SwiftUI and some of the a11y APIs we’ve covered are relatively
young - therefore there are still some bugs present
• Ex. Currently there is a bug in accessibility representation API

when an adjustable control is used

35

Gotcha in Action: Pobody’s Nerfect

36

Custom Slider should be announced as:
“Window Distance, In Window, Adjustable,
swipe up or down with one finger to adjust the
value’. Slider position and value label should
update with each swipe.

Custom Stepper should be announced as:
“Pot Size, 0 inch, Adjustable, swipe up or
down with one finger to adjust the value’.
Value label should update with each swipe.

Correct behavior does not
happen until VoiceOver is
turned off and back on

Gotchas

• Default basic accessibility
• Accessibility sort priority
• SF symbol images
• Text based image overlays
• Pobody’s nerfect

37

Turning the Gotchas into Goodies

38

How can I fix issues from Gotchas?

• Use Accessibility preview in Xcode
• Always experience your app with an AT
• axe DevTools XCUI with SwiftUI support is now available!
• axe DevTools for iOS - UIKit
• Deque can help!

• Manual assessments and audits
• Accessibility consulting

• Check out the example app from this talk on gitHub for accessibility
examples

39

Summary
Some Key Takeaways

40

Summary
• SwiftUI provides a somewhat decent accessibility experience out of the box
• Default elements and controls are focusable with an Assistive Technology

• A default accessibility label is provided
• Actions provided automatically so users can activate controls

• Not all custom controls are focusable by default
• Goodies:

• Default basic accessibility
• Accessibility Representation API
• Accessibility Sort Priority
• Accessibility Custom Content
• Accessibility Preview

• Gotchas:
• Default basic accessibility
• Accessibility Sort Priority
• SFSymbol Images
• Text Based Image Overlays
• Podbody’s Nerfect

41

Any Questions?

@dequesystems
https://github.com/
kateowens12/Plantiverse
deque-systems-inc
dequesystemsinc
Kate.owens@deque.com

42

mailto:kate.owens@deque.com?subject=axeConFollowUp
https://twitter.com/dequesystems
https://github.com/kateowens12/Plantiverse
https://github.com/kateowens12/Plantiverse
https://www.linkedin.com/company/deque-systems-inc
https://www.youtube.com/user/DequeSystemsInc

	SwiftUI & Accessibility: Goodies and Gotchas
	Agenda
	SwiftUI
	What’s the story with SwiftUI?

	SwiftUI and accessibility overview
	Accessibility in SwiftUI

	Goodies & Gotchas
	Quick Note
	Plantiverse - an Accessible SwiftUI App

	Goodies & Gotchas: A Brief Overview
	What is a Goodie? What is a Gotcha?

	Goodies
	Goodie #1: Default Basic Accessibility
	Gotcha In Action: Default Basic Accessibility
	Goodie #2: Accessibility Representation API
	Goodie in Action: Accessibility Representation API
	Goodie #3: Accessibility Custom Content
	Goodie in Action: Accessibility Custom Content
	Goodie #4: Accessibility Sort Priority
	Accessibility Sort Priority in Action
	Goodie #5: Accessibility Preview
	Goodie in Action: Accessibility Preview
	Goodies

	Gotchas
	Gotcha #1: Default Basic Accessibility
	Gotcha In Action: Default Basic Accessibility
	Gotcha #2: Accessibility Sort Priority
	Gotcha In Action: Accessibility Sort Priority continued
	Gotcha #3: SF Symbol Images
	Gotcha In Action: SFSymbol Images
	Gotcha #4: Text Based Image Overlays
	Gotcha in Action: Text Based Image Overlays
	Gotcha #5: Pobody’s Nerfect
	Gotcha in Action: Pobody’s Nerfect
	Gotchas

	Turning the Gotchas into Goodies
	How can I fix issues from Gotchas?

	Summary
	Any Questions?

